Role of Salmonella Pathogenicity Island 1 protein IacP in Salmonella enterica serovar typhimurium pathogenesis.
نویسندگان
چکیده
Gram-negative bacteria, including Salmonella enterica serovar Typhimurium, exploit type III secretion systems (T3SSs) through which virulence proteins are delivered into the host cytosol to reinforce invasive and replicative niches in their host. Although many secreted effector proteins and membrane-bound structural proteins in the T3SS have been characterized, the functions of many cytoplasmic proteins still remain unknown. In this study, we found that IacP, encoded by Salmonella pathogenicity island 1, was important for nonphagocytic cell invasion and bacterial virulence. When the iacP gene was deleted from several Salmonella serovar Typhimurium strains, the invasion into INT-407 epithelial cells was significantly decreased compared to that of their parental strains, and retarded rearrangements of actin fibers were observed for the iacP mutant-infected cells. Although IacP had no effect on the secretion of type III translocon proteins, the levels of secretion of the effector proteins SopB, SopA, and SopD into the culture medium were decreased in the iacP mutant. In a mouse infection model, mice infected with the iacP mutant exhibited alleviated pathological signs in the intestine and survived longer than did wild-type-infected mice. Taken together, IacP plays a key role in Salmonella virulence by regulating the translocation of T3SS effector proteins.
منابع مشابه
Posttranslational maturation of the invasion acyl carrier protein of Salmonella enterica serovar Typhimurium requires an essential phosphopantetheinyl transferase of the fatty acid biosynthesis pathway.
Salmonella pathogenicity island 1 (SPI-1) carries genes required for the formation of a type 3 secretion system, which is necessary for the invasion process of Salmonella. Among the proteins encoded by SPI-1 is IacP, a homolog of acyl carrier proteins. Acyl carrier proteins are mainly involved in fatty acid biosynthesis, and they require posttranslational maturation by addition of a 4'-phosphop...
متن کاملEffect of iacP mutation on flagellar phase variation in Salmonella enterica serovar typhimurium strain UK-1.
Flagella are surface appendages that are important for bacterial motility and invasion of host cells. Two flagellin subunits in Salmonella enterica serovar Typhimurium, FliC and FljB, are alternatively expressed by a site-specific DNA inversion mechanism called flagellar phase variation. Although this inversion mechanism is understood at the molecular level, the key factor controlling the expre...
متن کاملssrA (tmRNA) plays a role in Salmonella enterica serovar Typhimurium pathogenesis.
Escherichia coli ssrA encodes a small stable RNA molecule, tmRNA, that has many diverse functions, including tagging abnormal proteins for degradation, supporting phage growth, and modulating the activity of DNA binding proteins. Here we show that ssrA plays a role in Salmonella enterica serovar Typhimurium pathogenesis and in the expression of several genes known to be induced during infection...
متن کاملQseC mediates Salmonella enterica serovar typhimurium virulence in vitro and in vivo.
The autoinducer-3 (AI-3)/epinephrine (Epi)/norepinephrine (NE) interkingdom signaling system mediates chemical communication between bacteria and their mammalian hosts. The three signals are sensed by the QseC histidine kinase (HK) sensor. Salmonella enterica serovar Typhimurium is a pathogen that uses HKs to sense its environment and regulate virulence. Salmonella serovar Typhimurium invades e...
متن کاملSiiE is secreted by the Salmonella enterica serovar Typhimurium pathogenicity island 4-encoded secretion system and contributes to intestinal colonization in cattle.
Here we report that Salmonella enterica serovar Typhimurium pathogenicity island 4 carries a type I secretion system (siiCDF) which secretes an approximately 600-kDa protein (encoded by siiE). SiiE is surface expressed, and its production is regulated by HilA. SiiE and SiiF influence colonization in cattle and the invasion of bovine enterocytes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Infection and immunity
دوره 79 4 شماره
صفحات -
تاریخ انتشار 2011